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can be made wider by utilizing a wider frequency band

3-dB directional coupler. The proposed YIG resonator

circuit will be naturally applicable to other negative resis-
oscillator with the YIG ,
resonator circuit having tance type oscillators like that of an IMPATT diode oscilla-+ -------*,
isolator property

1 f tor, but for the application to the more high power oscilla-

frequency tor, some careful considerations about the nonlinear effect

~ \’

jump
of YIG sample will be required.
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confirmed by the experiment. The tuning frequency range

of the experimental oscillator is restricted by the char- [4]

acteristics of the 3-dB directional coupler being used, so a [5]
tunable frequency range of the oscillator with the circuit
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Reflection of Magnetostatic Forward Volume
Waves by a Shallow-Grooved

Grating on a YIG Film

JAYANTKUMAR P. PAREKH, MEMBER, IEEE, AND HANG-SHENG TUAN, MEMBER, IEEE

Abstract-The magnetostatic forward volume wave (MSFVW) reflec-

tion characteristics of a uniform grating of shallow grooves etched on the
planar surface of an epitaxiaf YfG film are treated using an approach

which integrates field theory with the coupled-mode approach. The

MSFVW reflectivity per groove is found to be comparable to the reflectiv-
ity of magnetustatic surface waves (MSSW’S) and thus is fomsd to be
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significantly large considering that the volume waves are reflected by
snrface-locafiied and shaflow grooves.

I. INTRODUCTION

A CLASS OF high-performance surface-acoustic-wawe

(SAW) devices such as resonators and bandpass and

chirp filters which are based on the use of shallolw-

grooved reflector arrays has recently emerged, see for

example [1]. A potential exists for the realization of simi-

lar devices operating at higher frequencies based on the

use of magnetostatic waves in epitaxial YIG films. Recent
experimental [2] and theoretical [3]–[5] studies have

shown that magnetostatic surface waves (MSSWS) on a

YIG film are reflected significantly more strongly by a

groove than are SAWS by an equivalent groove on a
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LiNb03 substrate. While the MSSW reflectors have

potential for application to resonator and filter structures,

these structures must employ normal or near-normal inci-

dence of the MSSW at the grooves because of the limited

range of angle over which MSSW propagation can exist

[6], [7]. In contrast, magnetostatic forward volume waves

(MSFVW’S) [8]-[10] obtaining in a YIG film magnetized

normal to its surface are isotropic and thus amenable for

application to oblique-incidence grooved reflector config-

urations, e.g., ring resonators and filters, chirp filters, and

contiguous filter banks. The present paper represents the

first theoretical treatment of MSFVW shallow-grooved

reflector gratings which employs field theory in conjunc-

tion with the theory of two-mode coupling. The approach

used here parallels our previously reported studies of

SAW [11] and MSSW [4] grooved reflector gratings. In

parallel with these previously reported studies of SAW

and MSSW grooved reflector gratings and as a first step

towards a general theory for the reflection of the MSFVW

incident obliquely at a grooved grating, only the normal-

incidence problem is treated in this paper. It is found that

the MSFVW reflectivity per groove is significantly large

considering that the volume-wave reflector, viz., the

grooved grating, is surface localized and shallow.

II. THEORY

The geometry of the problem treated here is shown in

Fig. 1. The grating is comprised of N identical grooves of

constant cross-sectional profile in the y direction which

are spaced with a period p along the x direction, Thus the

total length of the grating is L= (N – l)p. The YIG film

thickness is denoted ~ the groove height is denoted h; the

groove width is denoted 2a corresponding to the separa-

tion between two points on a groove which are halfway

down the groove. Since only the normal-incidence prob-

lem is treated in this paper, the incident MSFVW travel-

ing in the + x direction impinges on the grating from the

left. Thus all field quantities vary with the space coordi-

nates x and z only, i.e., they are independent of y. A

boundary perturbation analysis is performed which re-

quires the grooves to be shallow; hence it is assumed that

c = h/A<< 1 where A is the wavelength of the MSFVW. The

grooves are considered to be almost rectangular so that

the external saturating bias field Hoi=, applied normal to

the film, may be assumed to produce an internal field Hi
and saturation magnetization M. which are uniform

within the film and z directed, i.e., Hi= Hiiz and 320=

Moiz.

The solution technique for determining the reflection

characteristics of a grating of shallow grooves employing

an integration of the field theory and the coupled-mode

approach has previously been described in detail in the

context of SAW [11] and MSSW [4] reflectors. As in the

case of MSSW grooved reflectors [4], loss of power

through bulk-wave generation outside of the YIG film is

nonexistent simply because, in the magnetostatic limit,

dane waves in the air and- ~adolinium–~allium–szarnet

— L =f#-/)p —’-J
I

Fig. 1. Geometry of the MSFVW grooved reflector grating.

(GGG) regions are purely of the inhomogeneous variety.

This absence of bulk-wave loss in the present problem

simplifies the solution technique significantly over that for

SAW reflectors. In the SAW reflector problem, three

modes are actually coupled in the grooved-grating region,

viz., the incident and reflected SAWS and the bulk waves,

with the result that a two-mode coupling characterization

of the problem is valid only at and in the vicinity of the

array synchronous frequency where the bulk-wave loss is

small and, therefore, is treated as a perturbation on the

coupling of the two other modes. In the present problem

there truly exist only two modes in the grooved-grating

region that are coupled together, viz., the incident and

reflected MSFVW’S. Thus the solution is valid at all

frequencies lying within the magnetostatic-volume-wave

(MSVW) spectrum.

The magnetic potentials @~rR), @~IG), and @\m) in the

AIR, YIG, and GGG regions, respectively, which describe

the MSFVW impinging on the grating, are solutions of the

magnetostatic wave equations

a 2r#l+az+=o

ax2 az2 ‘
AIR and GGG regions (1)

and

a 2+ a Z+
P-&+~=Q YIG region (2)

satisfying appropriate boundary conditions, i.e., tangential

magnetic field and normal magnetic induction are con-

tinuous across the surfaces z = O and z = – d. In (2), p=

~2 –j~)/~2 –f:) is the xx oryy component of the perme-

ability tensor characterizing the YIG medium where j~ =

~ovO +&)]112 is the upper bound of the MSVW spectrum

-& K j<j,, or, ahernatively, the lower bound of the MSSW
spectrum given, for MSSW localized at an unmetallized

YIG surface, by j.. < f< ~0+ 0.5j~. The frequencies ~0=
ypOHi and & = YPOMO(Y = 2.8 MHz/G) are the
gyrofrequency and magnetization frequency, respectively.

It is readily shown that these potentials have the expres-

sions

#fR) = ()* A. exp ( – kz) exp ( –jkx), Z>(I

[

(1-j@)+~lG) = A. exp ( – j~kz) – ~~+jP)

1
. exp (j&cz) exp ( –jkx), –d<z<()
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Fig. 2. Qualitative variation of the amplitudes of the incident and

reflected MSFVW’S within and outside the grating region.

and

-exp [ k(z + d)] exp ( –jkx), Z<– J (3)

where the time-harmonic dependence exp (j2@) has been

suppressed, and the wave number k = 2T/A of the inci-

dent (or reflected) wave satisfies the MSFVW dispersion

relation

()Ikl=& tan-’ -3 (4)

with

B=(– P)”2.

As the incident MSFVW progresses through the grat-

ing, its amplitude A +(x) decreases monotonically from

the known value A +(0)= AO at the start x= O of the

grating to some value A.(L) at the end x = L of the
grating. Beyond the grating, the amplitude remains con-

stant at A +(L) corresponding to the transmitted wave.

Similarly, the amplitude A-(x) of the reflected MSFVW

shows a monotonic increase from A _ (L) = O at the end of

the grating to some value A _ (0) at the start of the grating.

For x <O, A _(x) remains constant at A _(0) correspond-

ing to the amplitude of the MSFVW reflected by the

grating. For x> L, A_(x) must clearly be zero for all x

since a reflected MSFVW does not exist beyond the

grating. The qualitative features of the x variation of
A +(x) and A _(x) are shown in Fig. 2.

The assumption of shallow grooves leads to the result

that energy loss due to the reflection from a single groove

is [14], [15] of the order ~2. This energy loss occurs over

the length of a groove which is of the order of A. There-

fore, in the grating region, the potential functions describ-

ing the incident and reflected MSFVW’S within and out-

side of the grating region are

()j2~ A.(x) exp ( – kz) exp (Tjkx),+!lR)= ~ _ Z>()

[
O~IGJ= A ~(x) exp ( –j~kz) –

(1-j~)

(l+JB)
exp (j~kz) 1

.exp (~jkx), –d<z<O

()
j2 A, (x)(sin ~q~GG) = _ kd+ ~ COS ~kd)

“exp [k(z + d) ] exp (~jkx), Z<–d (5)

where the nonuniform amplitude functions A +(x) do not

vary appreciably over a distance A. These amplitude func-

tions are obtained from the two-mode coupling analysis

[12], [13] to be

~+(x) =Aocosh[KL(l-~) ]sechKL (6)

and

[(
A _(x)= A _(0) sinh KL 1 – ~) ] cosech KL (7)

where K is an unknown phenomenological coupling con-

stant and A _(0) is the unknown amplitude of the reflected

wave. From (6) and (7), the MSFVW amplitude reflecticm

coefficient of the grating is R(O)= xl _ (0)/A& By imposirlg

the requirement of energy conservation on the grating, it

is readily shown that 1A_ (0)1= IAOI tanh KL. Thus the

coupled mode theory yields

IR(0)I =tanh KL. @)

Since in (8) K is an unknown, a second relation connect-

ing II?(O)I and K must be found in order to determine

IR(0)I. This second relation is obtained from field theory

by employing a boundary perturbation approach de-

scribed in detail elsewhere in the context of the SAW

scattering from a single shallow groove [14] or from a

shallow-grooved grating [11]. In the present work, only a

brief description of the perturbation theory will be given.

Since the incident MSFVW specified in (5) cannot by

itself satisfy the boundary conditions at the grooved YIG

surface, the existence of scattered fields must be post-

ulated. Because of the weak-scatterer nature of the shal-

low grooves, the total fields may be expressed as the

power-series expansion

@(AIR)= 4%1R) + 5 ‘m+iAIR)
~=1

~(ylG) = ~~lG) + ~ ~~&’lQ
~=1

O(G=) = @fGG) + 5 ~m@LGGG) (9)
~=1

in the small parameter c. Since c is just a parameter and

the total fields @(AIR), @wIG), and +(GGG) satisfy the ma.g-

netostatic wave equations (1) and (2), d follows thlat

+LAIR)> (GGG) also satisfy these equations for@~yIG), and ~~

each value of m. The boundary conditions require the

tangential magnetic field and the normal magnetic induc-

tion to be continuous across the top (grooved) and bottc}m

(planar) surfaces of the YIG film.

In the boundary perturbation technique, the tangential

magnetic field and normal magnetic induction are ex-

panded in a Taylor series in z about z = O, and the
coefficient function for each power term of E is required to

vanish because of the nonmixing property of the different

power terms of c. This procedure is equivalent to replac-

ing the original problem with an equivalent problem of

finding the potentials @~A]R),4#’IG), and 4LGW) (for each

m) in an ungroooed YIG film geometry which are excited
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by a magnetic surface charge [16] distribution W(X, O) and

an electric surface current distribution ~Y(x, O) located on

the ungrooved surface z = O within the region O<x < L.

For the first-order scattered fields, these equivalent or

induced surface sources on an ungrooved YIG film surface

within the region occupied by the grating in a grooved

geometry are

[
?l(x,o)= pJf(x) – ~2:’R)(X,o)+ a2:’ (X,o)

1

[
M(x,o) (lo)m =(X,O)-P ax+ @ dx

1

and

[

a 2+(p13

J-,(x, o) =/LJ..(x) a~~~(X,o)- axaz (xJo)
1

[
=(X,O) (11)

df(x) W(X,O) - az
+ ~~ dx 1

where ~ is the permeability of free space and f(x) is the

function defining the profile of the grooved grating. Since

~(x) and df(x)/dx are zero outside of the grating region,

the induced sources, as expected, are seen from (10) and

(11) to depend only on the incident MSFVW within the

grating region and the profile of the grating.

Using the standard Fourier transform technique, the

foregoing equivalent source problem in an ungrooved

YIG film geometry readily yields integral expressions for

the first-order scattered-field potentials. The residue con-

tributions to these integrals at the pole corresponding to

the reflected wave yields the expressions for the potentials
@~IR), @~IG), and ~~m). The residue calculation is

greatly simplified by the assumption that the grooves are

individually weak scatterers, i.e., the amplitude function

A +(x) varies very slowly with x. It is found that the

resulting approximate expression for the MSFVW ampli-

tude reflection coefficient of the grating may be written as

R(o)= –j(h/A)JkH(–k) (12)

where { is an array factor and H( – k) = lim&+_ ~ H($),

with H($) being the Fourier transform of the function

~l(x) exp ( –jkx) where fl(x) is a function defining the
profile of a single groove centered at the origin. For

grooves that are almost rectangular, the expression for
H(– k) is [14]

H(–k)~–k-l sin2ka. (13)

The array factor { has the expression

{

(l-g~e-~’) ,~~+ (l-g~e~”) ,-u
{=

2co;h KL (l-ge-v) (l-gev) 1

(14)

where v= Kp and g= exp ( –j2kp).
Equation (12) reduces to the expression for the first-

order MSFVW reflection coefficient for a single groove

[15] by making the array factor{ unity. For a grating, (8)

and (12) provide two equations in two unknowns, viz.,

Ill(O)] and K, which need to be solved simultaneously

using an iterative procedure. Once these unknowns are

found, the complex reflection coefficient R(O) is obtained

by substituting the value of K into (12). The reflection

coefficient R(O) depends on the groove width 2a through

the function II( – k) in (13) and on the groove periodicity

p through the function g in (14). The optimum values of

2a andp which maximize IR(0)I are 2a =A/4 andp =A/2.

In order to design a MSFVW reflector with known YIG

film parameters and for operation at a prescribed

frequency and bias field, one needs to solve (4) for A

pertinent to these parameters and then to use the forego-

ing optimum values of groove width and periodicity.

III. NUMERICAL RESULTS AND DISCUSSION

The theoretical results obtained in Section II apply to

any of the even or odd MSFVW modes supported by the

YIG film. The dispersion curve for any particular mode

corresponds [8], [10] to a monotonic increase in k and

dk/df with a frequency over the MSVW spectrum, with a

resonance (k+ co) occurring at the upper bound of the

spectrum. As the mode number is increased at a fixed

frequency, the dispersion curve shifts in the direction of

increasing k. The effect of this increase in k with mode

number at a given frequency is readily interpreted for the

case of the MSFVW reflection by a single groove as

explained below.

A. MSFVW Reflectivi~ of a Sing[e Groove

From (12) and (13) it is seen that the frequency varia-

tion of IR(0)l/(h/A) exhibits maxima at frequencies corre-

sponding to 2ka = (2n + 1)77/2, n = 0,1,2,. . “, and zeroes

at frequencies corresponding to 2ka = mn, m =1,2,3,”” “ .

The reflection coefficient at all of these maxima has the

same value lR(0)l~,X = h/A. For h/A =0.015, this yields a

value IR l~.X = 1.5 percent which is approximately 150

percent of the SAW amplitude reflection coefficient R =

0.9 percent obtaining for a groove of the same geometry

and normalized depth on a y-cut z-propagating LiNb03

[11]: The value of lR(0)]~,X obtained here is somewhat

comparable to the peak value of IR(0)l~aX obtaining for

the MSSW reflectivity of a single groove of the same
geometry and normalized depth on a YIG film [5]. In light

of the fact that in the present work it is volume waves that

are reflected by grooves that are surface localized as well

as shallow, it is concluded that the MSFVW reflectivity of

a groove is significantly large.

The effect on R(0) of increasing the YIG film thickness

d is readily interpreted from (4), (12), and (13). Equation

(4) shows that at a given frequency the MSFVW wave-

length A is directly proportional to d. Thus, from (12) and

(13), for a fixed groove depth h, lR(0)l~,X is inversely

proportional to d. It is evident that lR(0)l~X remains

independent of d if h is changed in direct proportion to d.
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Fig. 3. Frequency variation of the MSFVW reflection coefficient for a
single shallow groove, with AH, =500 G, @40= 1750 G, d= 10 ~m,

2a= 10pm (dashed curve), and 2a= 20pm (solid curve).

In Fig. 3, computed frequency variation of IR(0)I is

presented for the lowest MSFVW mode. Also, all other

computations presented in this paper are for the lowest

MSFVW mode, with the values of the internal bias field

pOH,, saturation magnetization pokfo, and YIG film thick-

ness d being chosen to be 500 G, 1750 G, and 10 pm,

respectively. The dashed curve in Fig. 3 corresponds to

groove width 2a= 10pm and the solid curve to groove

width 2a= 20 pm. Only the lowest two peaks are shown

on the dashed curve and only the lowest three peaks on

the solid curve since the increasingly smaller frequency

spacing of the higher peaks makes them difficult to show

on the frequency scale used. The monotonic and rapid

decrease in the frequency spacing of the peaks is con-

sistent with the MSFVW dispersion characteristics, viz.,

the MSFVW dispersion curve for a given d and a given

mode corresponds to a monotonic increase in k and

dk/df with frequency. The effect of changing the mode

number from one value to a higher value is apparent, i.e.,

the frequencies corresponding to lR(0)l~,X are lowered.

Thus the effect of increasing the mode number for a given

groove width is qualitatively equivalent to increasing the

groove width for a fixed mode number. This behavior is
implied by the sin 2ka factor in (13).

B. MSFVW Rejlectivi@ of a Groooed Grating

In Fig. 4, the variation with N of the grating reflectivity

is presented for a fixed frequency j= 2.02 GHz, groove

width 2a= 20 pm, grating period p =40 pm, and five

values of the groove height, i.e., h/A= 0.005, 0.010, 0.015,

0.020, and 0.025. The curves in Fig. 4 correspond to the

maximum reflectivity point on the lowest peak of the solid

curve in Fig. 3, which occurs at f = 2.02 GHz and A= 80

pm. In order to highlight the small deviation from 1 of

IR(0)I for large values of IV, a plot of 1 – IR(0)I versus N is

,“

1 /0 /00 3~

AWBER OF GROOMS N

Fig. 4. Variation with N of 1– IR(0) I for a MSFVW grooved grating,
with j= 2.02 GHz, 2a= 20 pnL p = 40 pm, P&t= 50 G, p#fo = 1750 G,

and d= 10 pm. The normalized groove depth h/A is taken as a

parameter.

ib
1

16’:
IRI

162:

15‘
200 2.01 202 2.03 .2(

f (&4z)

(a)

90”

,@

0“

-90“z ~. 201 2.02 203 204

f (GHz)

Fig. 5. Frequency variation of the (a) amplitude and (b) phase of R(0)
for a grooved grating, with N= 25, 2a= 20 pm, p= 40 prw wH, = 500

G, p&O= 1750 G, d= 10 pm, and h/A =0.005.

presented, and a logarithmic scale is used. As h/A is

increased for a given N, IR(0) I is seen to go up in agree-
ment with expectation.

In Fig. 5, the effect of moving off the synchronous

frequency of a grating is shown for a grating comprised. of

N= 25 grooves and of parameters 2a= 20 pm, p =40 pm,
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,J4~

f (GHZ) “

Fig. 6. Frequency variation of IR(0)I for a grooved ~ating with N= 50,
2a=20 m, p=40 pm, & =500 G, @40= 1750 G, d= 10 pm, and

h/A= O.&15.

and h/A =0.005, i.e., the frequency variation of the mag-

nitude and phase of R(O) is presented in the vicinity of the

synchronous frequency j= 2.02 GHz. Only a small

frequency interval around the synchronous frequency is

taken in Fig. 5 in order to indicate details of variation of

the magnitude and phase of R(0). As expected, the reflec-

tion coefficient R(O) undergoes a phase change of 180° as

the frequency is increased through the synchronous

frequency. A conspicuous feature of Fig. 5(b) is the linear

variation of the phase with frequency. Finally, Fig. 6

illustrates the reduction in bandwidth of the principal lobe

in Fig. 5(a) with an increase in the number of grooves in

the grating. The curve in Fig. 6 was computed for N = 50,

with all the other parameters being the same as in Fig. 5.

The existence of subsidiary lobes on either side of the

principal lobe is evident in Fig, 6.

IV. CONCLUSION

The MSFVW reflection characteristics of a shallow-

grooved grating etched on top of a YIG film are treated
for the case of normal incidence. The MSFVW reflectivity

is found to be comparable to the reflectivity of the MSSW

in a similar geometry and thus to be significantly large

considering that the volume waves are scattered by

grooves that are shallow and surface localized. The ab-

sen~e of the MSVW generation outside of the YIG film

region suggests that by deepening the grooves so that they

are no longer shallow, the MSFVW reflectivity of a grat-

ing might be further enhanced, thereby reducing the num-

ber of grooves needed to produce a prescribed reflectivity.
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