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confirmed by the experiment. The tuning frequency range
of the experimental oscillator is restricted by the char-
acteristics of the 3-dB directional coupler being used, so a
tunable frequency range of the oscillator with the circuit
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can be made wider by utilizing a wider frequency band
3-dB directional coupler. The proposed YIG resonator
circuit will be naturally applicable to other negative resis-
tance type oscillators like that of an mpAaTT diode oscilla-
tor, but for the application to the more high power oscilla-
tor, some careful considerations about the nonlinear effect
of YIG sample will be required.
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Reflection of Magnetostatic Forward Volume
Waves by a Shallow-Grooved
Grating on a YIG Film

JAYANTKUMAR P. PAREKH, MEMBER, IEEE, AND HANG-SHENG TUAN, MEMBER, IEEE

Abstract—The magnetostatic forward volume wave (MSFVYW) reflec-
tion characteristics of a uniform grating of shallow grooves etched on the
planar surface of an epitaxial YIG film are treated using an approach
which integrates field theory with the coupled-mode approach. The
MSFVW reflectivity per groove is found to be comparable to the reflectiv-
ity of magnetostatic surface waves (MSSW’s) and thus is found to be
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significantly large considering that the volume waves are reflected by
surface-localized and shallow grooves.

I. INTRODUCTION

CLASS OF high-performance surface-acoustic-wave

(SAW) devices such as resonators and bandpass and
chirp filters which are based on the use of shallow-
grooved reflector arrays has recently emerged, see for
example [1]. A potential exists for the realization of sitmni-
lar devices operating at higher frequencies based on the
use of magnetostatic waves in epitaxial YIG films. Recent
experimental [2] and theoretical [3]-[5] studies have
shown that magnetostatic surface waves (MSSW’s) on a
YIG film are reflected significantly more strongly by a
groove than are SAW’s by an equivalent groove on a

0018-9480,/78 /1200-1039$00.75 ©1978 IEEE



1040

LiNbO, substrate. While the MSSW reflectors have
potential for application to resonator and filter structures,
these structures must employ normal or near-normal inci-
dence of the MSSW at the grooves because of the limited
range of angle over which MSSW propagation can exist
[6], [7]. In contrast, magnetostatic forward volume waves
(MSFVW’s) [8]-[10] obtaining in a YIG film magnetized
normal to its surface are isotropic and thus amenable for
application to oblique-incidence grooved reflector config-
urations, e.g., ring resonators and filters, chirp filters, and
contiguous filter banks. The present paper represents the
first theoretical treatment of MSFVW shallow-grooved
reflector gratings which employs field theory in conjunc-
tion with the theory of two-mode coupling. The approach
used here parallels our previously reported studies of
SAW [11] and MSSW [4] grooved reflector gratings. In
parallel with these previously reported studies of SAW
and MSSW grooved reflector gratings and as a first step
towards a general theory for the reflection of the MSFVW
incident obliquely at a grooved grating, only the normal-
incidence problem is treated in this paper. It is found that
the MSFVW reflectivity per groove is significantly large
considering that the volume-wave reflector, viz., the
grooved grating, is surface localized and shallow.

II. THEORY

The geometry of the problem treated here is shown in
Fig. 1. The grating is comprised of N identical grooves of
constant cross-sectional profile in the y direction which
are spaced with a period p along the x direction. Thus the
total length of the grating is L=(N —1)p. The YIG film
thickness is denoted d; the groove height is denoted 4; the
groove width is denoted 2a corresponding to the separa-
tion between two points on a groove which are halfway
down the groove. Since only the normal-incidence prob-
lem is treated in this paper, the incident MSFVW travel-
ing in the + x direction impinges on the grating from the
left. Thus all field quantities vary with the space coordi-
nates x and z only, i.e., they are independent of y. A
boundary perturbation analysis is performed which re-
quires the grooves to be shallow; hence it is assumed that
e=h/A<1 where A is the wavelength of the MSFVW. The
grooves are considered to be almost rectangular so that
the external saturating bias field Hyi,, applied normal to
the film, may be assumed to produce an internal field H,
and saturation magnetization M, which are uniform
within the film and z directed, i.e., H,= H,i, and M,=
Myi,.

The solution technique for determining the reflection
characteristics of a grating of shallow grooves employing
an integration of the field theory and the coupled-mode
approach has previously been described in detail in the
context of SAW {11] and MSSW [4] reflectors. As in the
case of MSSW grooved reflectors [4], loss of power
through bulk-wave generation outside of the YIG film is
nonexistent simply because, in the magnetostatic limit,
plane waves in the air andsgadolinium-gallium-garnet
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Fig. 1. Geometry of the MSFVW grooved reflector grating.

(GGGQG) regions are purely of the inhomogeneous variety.
This absence of bulk-wave loss in the present problem
simplifies the solution technique significantly over that for
SAW reflectors. In the SAW reflector problem, three
modes are actually coupled in the grooved-grating region,
viz., the incident and reflected SAW’s and the bulk waves,
with the result that a two-mode coupling characterization
of the problem is valid only at and in the vicinity of the
array synchronous frequency where the bulk-wave loss is
small and, therefore, is treated as a perturbation on the
coupling of the two other modes. In the present problem
there truly exist only two modes in the grooved-grating
region that are coupled together, viz., the incident and
reflected MSFVW’s. Thus the solution is valid at all
frequencies lying within the magnetostatic-volume-wave
(MSVW) spectrum.

The magnetic potentials ¢, $Y1D, and ¢ in the
AIR, YIG, and GGG regions, respectively, which describe
the MSFVW impinging on the grating, are solutions of the
magnetostatic wave equations

2 2
9% + % _ 0, AIR and GGG regions (1)
ox?  9z?
and
3% 3% .
24220, YIG region 2
o™ a2 5 @

satisfying appropriate boundary conditions, i.e., tangential
magnetic field and normal magnetic induction are con-
tinuous across the surfaces z=0 and z=—4d. In (2), p=
(f*=fH/(f*—f3 is the xx or yy component of the perme-
ability tensor characterizing the YIG medium where f;=
Uolfo+£1r)]/? is the upper bound of the MSVW spectrum
Jo < f<f;, or, alternatively, the lower bound of the MSSW
spectrum given, for MSSW localized at an unmetallized
YIG surface, by f;<f<f,+0.5f,. The frequencies f,=
YoH; and f,, = ypoM(y =2.8 MHz/G) are the
gyrofrequency and magnetization frequency, respectively.
It is readily shown that these potentials have the expres-
sions

¢(¢IR)=(%)AO exp (—kz) exp (—jkx), z>0
¢(}_{IG)=AO|:CXP (—JjBkz)— 8 __*_j§§
-exXp (JBkZ)} eXp(‘”ij), —d<z<0
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Fig. 2. Qualitative variation of the amplitudes of the incident and
reflected MSFVW’s within and outside the grating region.

and

.
9= ( T8 )Ao(sm Bkd + B cos Bkd)

-exp [k(z+d)] exp (—jkx), z<-d (3)

where the time-harmonic dependence exp (j2ft) has been
suppressed, and the wave number k=2x/A of the inci-
dent (or reflected) wave satisfies the MSFVW dispersion

relation
1 _ 28
kl|=—5 tan' | —
=g ™ 1—32)

B=(—w">.

As the incident MSFVW progresses through the grat-
ing, its amplitude A, (x) decreases monotonically from
the known value 4,(0)=4, at the start x=0 of the
grating to some value A4, (L) at the end x=L of the
grating. Beyond the grating, the amplitude remains con-
stant at 4, (L) corresponding to the transmitted wave.
Similarly, the amplitude 4 _(x) of the reflected MSFVW
shows a monotonic increase from A _(L)=0 at the end of
the grating to some value 4 _(0) at the start of the grating.
For x <0, A_(x) remains constant at A_(0) correspond-
ing to the amplitude of the MSFVW reflected by the
grating. For x>L, A_(x) must clearly be zero for all x
since a reflected MSFVW does not exist beyond the
grating. The qualitative features of the x variation of
A . (x) and 4 _(x) are shown in Fig. 2.

The assumption of shallow grooves leads to the result
that energy loss due to the reflection from a single groove
is [14], [15] of the order €. This energy loss occurs over
the length of a groove which is of the order of A. There-
fore, in the grating region, the potential functions describ-
ing the incident and reflected MSFVW’s within and out-
side of the grating region are

4)

with

PR = (lj—ij’[% )A L(x) exp (—kz) exp (Fjkx), z>0
O = A..(3) exp (~JBk2)~ (755 %0 UBK)
-exp (jkx), -d<z<0
$CCO = (% )A . (x)(sin Bkd + 8 cos Bkd)
-exp [k(z+d)] exp (Fjkx), z<-d &)
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where the nonuniform amplitude functions 4. (x) do not
vary appreciably over a distance A. These amplitude func-
tions are obtained from the two-mode coupling analysis
[12], [13] to be

A, (x)= A, cosh [KL(I - )} sech KL (6)

and
A_(x)=4_(0) sinh [KL(I - -z—)] cosech KL (7)

where K is an unknown phenomenological coupling con-
stant and 4 _(0) is the unknown amplitude of the reflected
wave. From (6) and (7), the MSFVW amplitude reflection
coefficient of the grating is R(0)=A4 _(0)/ A, By imposing
the requirement of energy conservation on the grating, it
is readily shown that |4 _(0)|=|4,| tanh KL. Thus the
coupled mode theory yields

|R(0)| =tanh KL. ®)

Since in (8) K is an unknown, a second relation connect-
ing |R(0)] and K must be found in order to determine
| R(0)]. This second relation is obtained from field theory
by employing a boundary perturbation approach de-
scribed in detail elsewhere in the context of the SAW
scattering from a single shallow groove [14] or from a
shallow-grooved grating [11]. In the present work, only a
brief description of the perturbation theory will be given.

Since the incident MSFVW specified in (5) cannot by
itself satisfy the boundary conditions at the grooved YIG
surface, the existence of scattered fields must be pos-
tulated. Because of the weak-scatterer nature of the shal-
low grooves, the total fields may be expressed as the
power-series expansion

[e2]
ATR) = qb(fm) + 2 €m¢5"4IR)

m=1
0
1G) _
69 =010+ 3 englro
m=1

[ea]
$(C00) = ¢(fGG) + 2 em (pr(nGGG)

m=1

(%)

in the small parameter €. Since € is just a parameter and
the total fields ¢A™®, ¢ and $©C9D satisfy the mag-
netostatic wave equations (1) and (2), it follows that

AR (VG and ¢{F99) also satisfy these equations for
each value of m. The boundary conditions require the
tangential magnetic field and the normal magnetic induc-
tion to be continuous across the top (grooved) and bottom
(planar) surfaces of the YIG film.

In the boundary perturbation technique, the tangential
magnetic field and normal magnetic induction are ex-
panded in a Taylor series in z about z=0, and the
coefficient function for each power term of € is required to
vanish because of the nonmixing property of the different
power terms of e. This procedure is equivalent to replac-
ing the original problem with an equivalent problem of
finding the potentials ¢, ¢, and ¢{7°? (for each
m) in an ungrooved YIG film geometry which are excited
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by a magnetic surface charge [16] distribution 7(x,0) and
an electric surface current distribution J,(x,0) located on
the ungrooved surface z=0 within the region 0<x<L.
For the first-order scattered fields, these equivalent or
induced surface sources on an ungrooved YIG film surface
within the region occupied by the grating in a grooved
geometry are

¢(AIR) 3 2¢(YIG)

n(x,0)=uo?\f(X)[ (x.0)+ (x,O)J

x (AIR) YIG)
+uoxdf.§x)[a¢ =0+ 0] (1)
d
" 32 ¢(AIR) 32 ¢ (YIG)
J,(x,0)= quf(x)[ (5,0~ 2t (x 0)}
+ 0}\ df(x) [ a¢;1:IR) (X,O) a¢+ ¢ ( O)] (1 1)

where p, is the permeability of free space and f(x) is the
function defining the profile of the grooved grating. Since
f(x) and df(x)/dx are zero outside of the grating region,
the induced sources, as expected, are seen from (10) and
(11) to depend only on the incident MSFVW within the
grating region and the profile of the grating.

Using the standard Fourier transform technique, the
foregoing equivalent source problem in an ungrooved
YIG film geometry readily yields integral expressions for
the first-order scattered-field potentials. The residue con-
tributions to these integrals at the pole corresponding to
the reflected wave yields the expressions for the potentials
BB oMIO)  and ¢©CCS, The residue calculation is
greatly simplified by the assumption that the grooves are
individually weak scatterers, i.e., the amplitude function
A (x) varies very slowly with x. It is found that the
resulting approximate expression for the MSFVW ampli-
tude reflection coefficient of the grating may be written as

R(0)=—j(h/N)SkH(~ k) (12)

where { is an array factor and H(-k)=lim,,_, H(§),
with H(%) being the Fourier transform of the function
fi(x) exp (—jkx) where fi(x) is a function defining the
profile of a single groove centered at the origin. For
grooves that are almost rectangular, the expression for
H(— k) is [14]

H(—k)~—k~!sin 2ka. (13)
The array factor { has the expression
o1 [(=gte™) o (-g%™)
2coshKL}| (1—ge™) (1—ge”)
(14)

where y= Kp and g=exp (—j2kp).
Equation (12) reduces to the expression for the first-
order MSFVW reflection coefficient for a single groove

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-26, NO. 12, DECEMBER 1978

[15] by making the array factor { unity. For a grating, (8)
and (12) provide two equations in two unknowns, viz.,
|R(0)| and K, which need to be solved simultaneously
using an iterative procedure. Once these unknowns are
found, the complex reflection coefficient R(0) is obtained
by substituting the value of K into (12). The reflection
coefficient R(0) depends on the groove width 2a through
the function H(— k) in (13) and on the groove periodicity
p through the function g in (14). The optimum values of
2a and p which maximize |R(0)| are 2a=A/4 and p=A/2.
In order to design a MSFVW reflector with known YIG
film parameters and for operation at a prescribed
frequency and bias field, one needs to solve (4) for A
pertinent to these parameters and then to use the forego-
ing optimum values of groove width and periodicity.

IIT.

The theoretical results obtained in Section II apply to
any of the even or odd MSFVW modes supported by the
YIG film. The dispersion curve for any particular mode
corresponds [8], [10] to a monotonic increase in k& and
dk / df with a frequency over the MSVW spectrum, with a
resonance (k—o0) occurring at the upper bound of the
spectrum. As the mode number is increased at a fixed
frequency, the dispersion curve shifts in the direction of
increasing k. The effect of this increase in k with mode
number at a given frequency is readily interpreted for the
case of the MSFVW reflection by a single groove as
explained below.

NUMERICAL RESULTS AND DISCUSSION

A. MSFVW Reflectivity of a Single Groove

From (12) and (13) it is seen that the frequency varia-
tion of |R(0)|/(h /M) exhibits maxima at frequencies corre-
sponding to 2ka=(2n+1n/2, n=0,1,2,- -+, and zeroes
at frequencies corresponding to 2ka=mm, m=1,2,3,-- -
The reflection coefficient at all of these maxima has the
same value |R(0)|,..=#/A. For h/A=0.015, this yields a
value |R|,, =15 percent which is approximately 150
percent of the SAW amplitude reflection coefficient R=
0.9 percent obtaining for a groove of the same geometry
and normalized depth on a y-cut z-propagating LiNbO,
[11]. The value of |R(0)|,,, Obtained here is somewhat
comparable to the peak value of |R(0)|,,, obtaining for
the MSSW reflectivity of a single groove of the same
geometry and normalized depth on a YIG film [5]. In light
of the fact that in the present work it is volume waves that
are reflected by grooves that are surface localized as well
as shallow, it is concluded that the MSFVW reflectivity of
a groove is significantly large.

The effect on R(0) of increasing the YIG film thickness
d is readily interpreted from (4), (12), and (13). Equation
(4) shows that at a given frequency the MSFVW wave-
length A is directly proportional to d. Thus, from (12) and
(13), for a fixed groove depth A, |R(0)),.x 1S 1nversely
proportional to 4. It is evident that |R(0)|,,, remains
independent of 4 if 4 is changed in direct proportion to d.
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Fig. 3. Frequency variation of the MSFVW reflection coefficient for a
single shallow groove, with poH, =500 G, p,My=1750 G, d=10 pm,
2a=10 pm (dashed curve), and 2a=20 pm (solid curve).

In Fig. 3, computed frequency variation of |R(0)| is
presented for the lowest MSFVW mode. Also, all other
computations presented in this paper are for the lowest
MSFVW mode, with the values of the internal bias field
poH,, saturation magnetization p,M,, and YIG film thick-
ness d being chosen to be 500 G, 1750 G, and 10 pm,
respectively. The dashed curve in Fig. 3 corresponds to
groove width 2a=10 pm and the solid curve to groove
width 2a=20 pm. Only the lowest two peaks are shown
on the dashed curve and only the lowest three peaks on
the solid curve since the increasingly smaller frequency
spacing of the higher peaks makes them difficult to show
on the frequency scale used. The monotonic and rapid
decrease in the frequency spacing of the peaks is con-
sistent with the MSFVW dispersion characteristics, viz.,
the MSFVW dispersion curve for a given 4 and a given
mode corresponds to a monotonic increase in k and
dk / df with frequency. The effect of changing the mode
number from one value to a higher value is apparent, i.e.,
the frequencies corresponding to |R(0)|,.x are lowered.
Thus the effect of increasing the mode number for a given
groove width is qualitatively equivalent to increasing the
groove width for a fixed mode number. This behavior is
implied by the sin 2ka factor in (13).

B. MSFVW Reflectivity of a Grooved Grating

In Fig. 4, the variation with N of the grating reflectivity
is presented for a fixed frequency f=2.02 GHz, groove
width 2a=20 um, grating period p=40 pm, and five
values of the groove height, i.e., 2/A=0.005, 0.010, 0.015,
0.020, and 0.025. The curves in Fig. 4 correspond to the
maximum reflectivity point on the Jowest peak of the solid
curve in Fig. 3, which occurs at f=2.02 GHz and A=280
pm. In order to highlight the small deviation from 1 of
|R(0)| for large values of N, a plot of 1—|R(0)| versus N is

REFLECTION OF MAGNETOSTATIC FORWARD VOLUME WAVES
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Fig. 4. Variation with N of 1—|R(0)| for a MSFVW grooved grating,
with f=2.02 GHz, 2a=20 pm, p =40 pm, pyH, =50 G, poM,=1750 G,
and d=10 pm. The normalized groove depth A/A is taken as a
parameter.

1 E
/0_’_—
IRl |
16k
-3
© 2.00 2.0 202 203 204
£ (GHz)
@)
qo‘_
il
o
M ez A6 2ot
£ (GHz)
®)

Fig. 5. Frequency variation of the (a) amplitude and (b) phase of R(0)
for a grooved grating, with N =25, 2a=20 pm, p=40 pm, poH, =500
G, uoMy=1750 G, d=10 pm, and #/A=0.005.

presented, and a logarithmic scale is used. As A/A is
increased for a given N, |R(0)| is seen to go up in agree-
ment with expectation.

In Fig. 5, the effect of moving off the synchronous
frequency of a grating is shown for a grating comprised of
N =25 grooves and of parameters 2a =20 pm, p=40 pm,
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Fig. 6. Frequency variation of |R(0)] for a grooved grating with N =50,
2a=20 pm, p=40 pm, goH, =500 G, poMy=1750 G, d=10 pm, and
h/A=0.005.

and h/A=0.005, i.e., the frequency variation of the mag-
nitude and phase of R(0) is presented in the vicinity of the
synchronous frequency f=2.02 GHz. Only a small
frequency interval around the synchronous frequency is
taken in Fig. 5 in order to indicate details of variation of
the magnitude and phase of R(0). As expected, the reflec-
tion coefficient R(0) undergoes a phase change of 180° as
the frequency is increased through the synchronous
frequency. A conspicuous feature of Fig. 5(b) is the linear
variation of the phase with frequency. Finally, Fig. 6
illustrates the reduction in bandwidth of the principal lobe
in Fig. 5(a) with an increase in the number of grooves in
the grating. The curve in Fig. 6 was computed for N =50,
with all the other parameters being the same as in Fig. 5.
The existence of subsidiary lobes on either side of the
principal lobe is evident in Fig, 6.

IV. CoNCLUSION

The MSFVW reflection characteristics of a shallow-
grooved grating etched on top of a YIG film are treated
for the case of normal incidence. The MSFVW reflectivity
is found to be comparable to the reflectivity of the MSSW
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in a similar geometry and thus to be significantly large
considering that the volume waves are scattered by
grooves that are shallow and surface localized. The ab-
sence of the MSVW generation outside of the YIG film
region suggests that by deepening the grooves so that they
are no longer shallow, the MSFVW reflectivity of a grat-
ing might be further enhanced, thereby reducing the num-
ber of grooves needed to produce a prescribed reflectivity.
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